Uniform energy decay rates of hyperbolic equations with nonlinear boundary and interior dissipation
نویسندگان
چکیده
We consider the problem of uniform stabilization of nonlinear hyperbolic equations, epitomized by the following three canonical dynamics: (1) the wave equation in the natural state space L2(Ω) × H(Ω), under nonlinear (and non-local) boundary dissipation in the Dirichlet B.C., as well as nonlinear internal damping; (2) a corresponding Kirchhoff equation in the natural state space [H(Ω) ∩H1 0 (Ω)]×H1 0 (Ω), under nonlinear boundary dissipation in the ‘moment’ B.C. as well as nonlinear internal damping; (3) the system of dynamic elasticity corresponding to (1). All three dynamics possess a strong, hard-to-show ‘boundary → boundary’ regularity property, which was proved, also by invoking a micro-local argument, in Lasiecka and Triggiani (2004, 2008). This is by no means a general property of hyperbolic or hyperbolic-like dynamics (Lasiecka and Triggiani, 2003, 2008). The present paper, as a continuation of Lasiecka and Triggiani (2008), seeks to take advantage of this strong regularity property in the case of those PDE dynamics where it holds true. Thus, under the above boundary → boundary regularity, as well as exact controllability of the corresponding linear model, uniform stabilization of nonlinear models is obtained under minimal nonlinear assumptions, provided that a corresponding unique continuation property holds true. The treatment of the present paper is cast in the abstract setting (Lasiecka, 1989, 2001; Lasiecka and Triggiani, 2000, Ch. 7, 2003, 2008), which is proper for these hyperbolic dynamics and recovers the results of Lasiecka and Triggiani (2003, 2008) in the absence of the nonlinear interior damping, in particular in the linear case.
منابع مشابه
Uniform Decay Rates of Solutions to a Structural Acoustics Model with Nonlinear Dissipation
In this work, the asymptotic behavior of solutions to a coupled hyperbolic/parabolic{like system is investigated. It is shown that with both components of the equation being subjected to nonlinear damping (boundary damping for the wave component, interior for the beam), a global uniform stability is attained for all (weak) solutions.
متن کاملGlobal Existence and Decay of Energy to Systems of Wave Equations with Damping and Supercritical Sources
This paper is concerned with a system of nonlinear wave equations with supercritical interior and boundary sources, and subject to interior and boundary damping terms. It is well-known that the presence of a nonlinear boundary source causes significant difficulties since the linear Neumann problem for the single wave equation is not, in general, well-posed in the finite-energy space H(Ω) × L(∂Ω...
متن کاملEffects of Non-uniform Suction, Heat Generation/Absorption and Chemical Reaction with Activation Energy on MHD Falkner-Skan Flow of Tangent Hyperbolic Nanofluid over a Stretching/Shrinking Eedge
In the present investigation, the magnetohydrodynamic Falkner-Skan flow of tangent hyperbolic nanofluids over a stretching/shrinking wedge with variable suction, internal heat generation/absorption and chemical reaction with activation energy have been scrutinized. Nanofluid model is composed of “Brownian motion’’ and “Thermophoresis’’. Transformed non-dimensional coupled non-linear equations a...
متن کاملBoundary Feedback Stabilization of a Nonlinear Flexible Gantry Manipulator Using Disturbance Observer
This paper aims to develop a boundary control solution for a single-link gantry robot manipulator with one axis of rotation. The control procedure is considered with link’s transverse vibrations while system undergoes rigid body nonlinear large rotation and translation. Initially, based on Hamilton principle, governing equations of hybrid motions as a set of partial differential equations...
متن کاملMagnetohydrodynamics Fluid Flow and Heat Transfer over a Permeable Shrinking Sheet with Joule dissipation: Analytical Approach
A laminar, two dimensional, steady boundary layer Newtonian conducting fluid flow passes over a permeable shrinking sheet in the presence of a uniform magnetic field is investigated. The governing equations have converted to ordinary nonlinear differential equations (ODE) by using appropriate similarity transformations. The main idea is to transform ODE with infinite boundary condition into oth...
متن کامل